J. Pharm. Pharmacol. 1981, 33: 194 Communicated September 30, 1980 0022-3573/81/030194-01 \$2.50/0 © 1981 J. Pharm. Pharmacol.

LETTERS TO THE EDITOR

Influence of some psychotropic agents on CaCl₂-induced arrhythmias in the rat

G. GRIMALDI, C. A. MAGGI*, A. MELI, Pharmacology Department Research Laboratories, A. Menarini Pharmaceuticals, 50131 Florence, Italy

Ventricular arrhythmias may occur as the result of a 3-4 fold increase in serum Ca²⁺ concentration and can be produced in animals by the intravenous injection of high doses of CaCl₂ (see Szekeres & Papp 1975). CaCl₂ induces arrhythmias by a direct action on the myocardium and possibly also by an indirect action mediated through the autonomic nervous system. Malinow et al (1953) showed that CaCl₂-induced arrhythmias could be partially prevented by surgical destruction of certain areas of the c.n.s. We have determined the potential anti-arrhythmic properties of some psychotropic agents on CaCl₂-induced arrhythmias in the rat.

Male albino rats, Wistar-Morini strain, 350-400 g, were anaesthetized with intraperitoneal urethane (1 g kg⁻¹). Lead II e.c.g. was recorded and visualized on a Hewlett-Packard oscilloscope. CaCl₂ and test compounds were injected into the left femoral vein.

Arrhythmias were induced by a bolus injection of 1 ml kg⁻¹ of 14% CaCl₂. The aqueous vehicle or test compounds were administered to groups of 6 animals each 2 min before CaCl₂. E.c.g. tracings were scored

Table 1. Effect of some psychotropic drugs on CaCl₂-induced arrhythmias in the rat.

		67	ED50 (mg kg ⁻¹) an
Treatment	Dose (mg kg ⁻¹)	% Protection	95% confidence limits
Oxazepam	10	0	25-6 (13-3-49-0)
	25	42	
Chlordiazepoxide	50 10	92 17	14.9 (14.4-15.4)
	15	50	14.2 (14.4-12.4)
	20	75	
Clozapine	. 5	17	11-2 (9-5-13-3)
	10 20	44 75	
Diazepam		p to 20 mg kg	-1+
Sulpiride		p to 60 mg kg	
Haloperidol	1	12	2.8 (2.5-3.0)
	2	37 64	
Chlorpromazine Imipramine	3	20	7-3 (5-6-9-6)
	5 7·5	50	(,
	10	81	
	2·5 3·75	31 67	3-1 (3-1-3-1)
	5	92	
Clomipramine	1.25	25	2.3 (1.4-3.7)
	2·5 5	50	
	3	87	

All results are the means of six experiments.

† Upper limit of solubility in aqueous vehicle.

according to a modification of Malinow et al (1953), i.e. 0 = no sign of arrhythmia, 1 = single extrasystoles, atrial or ventricular, 2 = coupled extrasystoles, ventricular rhythm, ventricular tachycardia, 3 = short runs (no more than 3 seconds) of ventricular fibrillation, 4 = long runs (over 3 seconds) of ventricular fibrillation.

Protection is expressed as % reduction of arrhythmic score of treated compared with control animals.

Percent protection values were plotted against the log-dose and the linear regression calculated according to the method of minimum squares.

ED50 values and their 95% confidence limits were calculated according to Litchfield & Wilcoxon (1949).

With the exception of diazepam and sulpiride, all the drugs tested antagonized to varying degrees CaCl₁-induced arrhythmias in the rat (Table 1). The antiarrhythmic effects of various psychotropics, particularly those possessing 'quinidine-like' properties have been attributed to their peripheral rather than central effects (Fekete & Borsy 1964; Alexander 1968; Baum et al 1971; Wang & James 1979). Since central as well as peripheral mechanisms play a role in the genesis of CaCl₁-induced arrhythmias in the rat (Malinow et al 1953; Szekeres & Papp 1975; Cuparencu et al 1978), it is possible that clozapine and haloperidol, which do not possess 'quinidine-like' properties, antagonize CaCl₁-induced arrhythmias, by interfering with the c.n.s.-mediated component of this phenomenon.

REFERENCES

Alexander, C. S. (1968) Circulation 38: 1014-1022 Baum, T., Eckfeld, D. K., Shropshire, A. T., Rowles, G., Varner, L. L. (1971) Arch. Int. Pharmacodyn. 193: 149-170

Cuparencu, B., Ticsa, I., Csutak, V., Sandor, V. I., Barzu, T., Safta, L. Do Trung, Dam. (1978) Agressologie 19: 367-378

Fekete, M., Borsy, J. (1964) Med. Exp. 10: 93-103

Litchfield, J. T., Wilcoxon, F. (1949) J. Pharmacol. Exp. Ther. 96: 99-113

Malinow, M. R., Battle, F. F., Malamud, B. (1953) Circ. Res. 1: 554-559

Szekeres, L., Papp, J. Gy. (1975) Handbook Exp. Pharmacol. 16: 131-182

Wang, C. M., James, C. A. (1979) Life Sci. 24: 1357-1366

Correspondence,